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Corrigé 1

Exercice 1 : Calculs avec l’opérateur ∇⃗
Soit f(r⃗, t) un champ scalaire et u⃗(r⃗, t) un champ vectoriel, dépéndant tous deux du temps t et de
la position r⃗. Vérifier la validité des relations suivantes et indiquer si chacun des membres est un
champs scalaire ou vectoriel.
(a) ∇⃗ · (fu⃗) ?

= u⃗ · ∇⃗f + f∇⃗ · u⃗
(b) (u⃗ · ∇⃗)f

?
= (∇⃗ · u⃗)f

(c) ∇⃗ · ∂
∂t u⃗

?
= ∂

∂t∇⃗ · u⃗

(d) (u⃗ · ∇⃗)u⃗
?
= u⃗ · (∇⃗ × u⃗)

Indication : Calculer ces expressions en coordonnées cartésiennes.

Solution :

(a) En coordonnées cartésiennes, on trouve pour
— Le membre gauche :

∇⃗ · (fu⃗) =

∂x
∂y
∂z

 ·

f

ux
uy
uz


=

∂x
∂y
∂z

 ·

fux
fuy
fuz


= ∂x(fux) + ∂y(fuy) + ∂z(fuz)

Ce terme est un champ scalaire.
— Le membre de droite :

u⃗ · ∇⃗f + f∇⃗ · u⃗ =

ux
uy
uz

 ·

∂xf
∂yf
∂zf

+ f

∂x
∂y
∂z

 ·

ux
uy
uz


= ux∂xf + uy∂yf + uz∂zf + f∂xux + f∂yuy + f∂zuz

= ∂x(fux) + ∂y(fuy) + ∂z(fuz)

Ce terme est un champ scalaire identique au membre de gauche.
⇒ La relation (a) est donc vérifiée.

(b) En coordonnées cartésiennes, on trouve pour
— Le membre de gauche :

(u⃗ · ∇⃗)f =

ux
uy
uz

 ·

∂x
∂y
∂z

 f

= (ux∂x + uy∂y + uz∂z)f

= ux∂xf + uy∂yf + uz∂zf

Ce terme est un champ scalaire.
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— Le membre de droite :

(∇⃗ · u⃗)f =

∂x
∂y
∂z

 ·

ux
uy
uz

 f

= (∂xux + ∂yuy + ∂zuz)f

Ce terme est aussi un champ scalaire, mais différent du membre de gauche.
⇒ La relation (b) n’est donc pas correcte.

(c) En coordonnées cartésiennes, on trouve pour
— Le membre de gauche :

∇⃗ · ∂

∂t
u⃗ =

∂x
∂y
∂z

 · ∂

∂t

ux
uy
uz


=

∂x
∂y
∂z

 ·

∂tux
∂tuy
∂tuz


= ∂x∂tux + ∂y∂tuy + ∂z∂tuz

Ce terme est un champ scalaire.
— Le membre de droite :

∂

∂t
∇⃗ · u⃗ =

∂

∂t
(∂xux + ∂yuy + ∂zuz)

= ∂t∂xux + ∂t∂yuy + ∂t∂zuz

Ce terme aussi un scalaire.
⇒ Puisque les dérivées partielles sont commutatives (par exemple ∂x∂tux = ∂t∂xux), la
relation (c) est valable.

(d) En coordonnées cartésiennes, on trouve pour
— Le membre de gauche :

(u⃗ · ∇⃗)u⃗ =

ux
uy
uz

 ·

∂x
∂y
∂z

ux
uy
uz


= (ux∂x + uy∂y + uz∂z)

ux
uy
uz


=

ux∂xux + uy∂yux + uz∂zux
ux∂xuy + uy∂yuy + uz∂zuy
ux∂xuz + uy∂yuz + uz∂zuz


Ce terme est un champ vectoriel.

— Le membre de droite est le produit scalaire du vecteur u⃗ et du vecteur ∇⃗ × u⃗, qui est
forcément un champ scalaire.

⇒ Comme le membre de gauche est un champ vectoriel et le membre de droite est un
scalaire, la relation (d) ne peut pas être valable.
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Exercice 2 : Gradient en coordonnées cartésiennes et sphériques
Dans le cours, nous avons défini ∇⃗f , ∇⃗· u⃗ et ∇⃗× u⃗ en coordonnées cartésiennes, mais ces opérateurs
sont indépendants du système de coordonnées. On va illustrer ceci avec un exemple. On considère
la fonction suivante :

f(r⃗) = exp

(
−|r⃗|

λ

)

(a) Calculer ∇⃗f en repérant r⃗ avec un système de coordonnées cartésiennes.
(b) Calculer ∇⃗f en repérant r⃗ avec un système coordonnées sphériques. Utiliser le formulaire.

Solution :

(a) En considérant un des coordonnées cartésiennes (x, y, z), on a |r⃗| =
√

x2 + y2 + z2. On
peut donc écrire :

f(x, y, z) = exp

(
−
√
x2 + y2 + z2

λ

)
Avec ce système de coordonnées, on a :

∇⃗f =e⃗x
∂

∂x

(
exp

(
−
√
x2 + y2 + z2

λ

))
+ e⃗y

∂

∂y

(
exp

(
−
√

x2 + y2 + z2

λ

))

+ e⃗z
∂

∂z

(
exp

(
−
√

x2 + y2 + z2

λ

))

=e⃗x ·
(
− 1

λ

)
exp

(
−
√

x2 + y2 + z2

λ

)
2x

2
√
x2 + y2 + z2

+ e⃗y ·
(
− 1

λ

)
exp

(
−
√

x2 + y2 + z2

λ

)
2y

2
√
x2 + y2 + z2

+ e⃗z ·
(
− 1

λ

)
exp

(
−
√
x2 + y2 + z2

λ

)
2z

2
√

x2 + y2 + z2

=− x

λ|r⃗|
exp

(
−|r⃗|

λ

)
e⃗x −

y

λ|r⃗|
exp

(
−|r⃗|

λ

)
e⃗y −

z

λ|r⃗|
exp

(
−|r⃗|

λ

)
e⃗z

=− r⃗

λ|r⃗|
exp

(
−|r⃗|

λ

)
(b) Supposons maintenant des coordonnées sphériques (r, θ, φ), tel que r = |r⃗|. On peut alors

écrire :
f(r, θ, φ) = exp

(
− r

λ

)
Avec ce système de coordonnées, on a :

∇⃗f = e⃗r
∂f

∂r
+ e⃗θ

1

r

∂f

∂θ
+ e⃗φ

1

r sin θ

∂f

∂φ

= e⃗r
∂

∂r

(
exp

(
− r

λ

))
+ 0⃗ + 0⃗

= − e⃗r
λ

exp
(
− r

λ

)
Sachant que e⃗r = r⃗/r, on retrouve bien le résultat obtenu avec l’opérateur gradient exprimé
avec un système des cartésiennes.
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Exercice 3 : Plus d’exemples en coordonnées sphériques
Pour un vecteur position r⃗, on définit la fonction suivante : f(r⃗) = 1

|r⃗| . En utilisant un système de
coordonnées sphériques répondre aux questions suivantes :
(a) Calculer ∇⃗f = F⃗ .
(b) Que vaut ∇⃗ · F⃗ ?
(c) Que vaut ∇⃗ × F⃗ ? Pourriez-vous deviner le résultat ?

Indication : utiliser le formulaire du cours.

Solution :

(a) Si on considère un système de coordonnées sphériques (r, θ, ϕ) tel que r = |r⃗|, on a alors
f(r, θ, ϕ) = 1

r . A l’aide du formulaire du cours, on peut écrire :

∇⃗f =
∂f

∂r
e⃗r +

1

r

∂f

∂θ
e⃗θ +

1

r sin θ

∂f

∂φ
e⃗φ

= − 1

r2
e⃗r

D’où F⃗ = −e⃗r/r
2.

(b) De même, avec F⃗ = Fre⃗r + Fθe⃗θ + Fφe⃗φ on a :

∇⃗ · F⃗ =
1

r2
∂

∂r
(r2Fr) +

1

r sin θ

∂(Fθ sin θ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

=
1

r2
∂

∂r
(
−r2

r2
)

= 0

(c) En prenant l’expression du rotationnel en coordonnées sphériques, on a :

∇⃗ × F⃗ =
1

r sin θ

(
∂(Fφ sin θ)

∂θ
− ∂Fθ

∂φ

)
e⃗r +

1

r

(
1

sin θ

∂Fr

∂φ
− ∂(rFφ)

∂r

)
e⃗θ +

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
e⃗φ

= 0⃗

On pouvait deviner le résultat car pour toute fonction f , on a ∇⃗ × (∇⃗f) = 0⃗ (une relation
qui est facile a démontrer en coordonnés cartésiennes).

Exercice 4 : Calcul de flux
On considère un tuyau rectangulaire de section S et d’axe selon e⃗z. Un liquide, de densité volumique
ρ0 constante, coule dans le tuyau à une vitesse fluide constante u⃗0 = u0e⃗z.
(a) Quel est le flux de masse à travers la section du tuyau (on considère la section S perpendiculaire

à l’axe e⃗z) ?
(b) A présent, on considère une surface S′, identique à S, mais qui n’est pas perpendiculaire à

e⃗z. Comment écrivez-vous le flux de masse à travers S′ ? Ce flux est-il égal à celui calculé
précédemment ?
Rappel : Le flux d’une quantité A à travers une surface S est définit comme la quantité de A
qui traverse S par unité de temps.
Remarque : on ne veut pas utiliser la relation ϕ =

s
S′ dϕ =

s
S′ ρu⃗0 · dS⃗′ vue dans le cours.

Le but de cet exercice est de la dériver.
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Solution :

(a) Dans ce premier cas, on a u⃗0 = u0e⃗z perpendiculaire à S. De plus le fluide étant incompréssible,
sa densité volumique ρ est constante et donc ρ = ρ0.
Le volume du fluide qui traverse la surface S dans un temps ∆t est un pavé droit de section S
et de longueur ∆t·u0 (voir figure). Ce volume contient une masse ∆m = ρ0∆V = ρ0Su0∆t.
On trouve donc que le flux de masse ϕ à travers la surface S est donné par :

ϕ =
∆m

∆t
= ρ0u0S

Remarque : Quelle est la dimension de ϕ ?
[ϕ] = m2 kg

m3
m
s = kg

s , c’est à dire la quantité de masse qui traverse la surface S par seconde.
Souvent, on parle aussi de flux volumétrique ϕv = Surface · u0 avec [ϕv] = m2m

s = m3

s ,
soit un volume qui traverse la surface S par seconde.

(b) Cette fois-ci, la vitesse n’est pas perpendiculaire à la surface. On définit l’angle θ, qui est
l’angle entre u⃗0 et le vecteur surface S⃗′ (comme indiquée dans la 2ème figure).

Dans ce cas, le volume ∆V ′ du fluide qui traverse la surface S′ dans un temps ∆t est celui
d’un parallélépipède. En prenant en compte l’inclinaison des faces d’entrée et de sortie, on
obtient ∆V ′ = ∆t ·u0 ·S′ cos(θ). On trouve donc le flux de masse ϕ à travers la surface S′ :

ϕ = ρ0u0S
′ cos(θ)

Et comme les surfaces S′ et S sont les mêmes, S = S′, on a :

ϕ = ρ0u0Scos(θ)
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Le flux est donc plus petit que dans le point (a) dans le cas où θ ̸= 0. Notez que l’avant-
dernière expression peut aussi être écrite comme ϕ = ρ0u⃗0 · S⃗′. Si la vitesse u⃗0 n’est pas
constante dans l’espace et/ou si la surface S′ n’est pas plane, ce résultat reste valable si l’on
considère un élément infinitésimal de surface : dϕ = ρ0u⃗0 ·dS⃗′ et ϕ =

s
S′ dϕ =

s
S′ ρu⃗0 ·dS⃗′.

On appelle ρu⃗0 la densité de flux de masse.
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